One can describe the mineralogy of a cave in terms of minerals and aggregates only in general features. For the finishing touches, we use Stepanov's not widely understood term "ensemble" as significantly more embracing than "assemblage", because many ensembles consist of the same minerals, but they are very different in aggregates. At the same time, the ensemble determines mineral-forming processes, microclimate and other important parameters. Naturally, the term "ensemble" is not uniform in general cases, and each type of ensemble is described only in application to a particular cave system or karst region. According to Stepanov, the ensemble is a result of one cycle of crystallization, when the subaquatic crusts are first overgrown by gravitational crusts, and corallite crusts, then by antholite crusts (for noncarbonate crusts) insuccessive phases before the final phase of downfall and dissolution takes place. As a rule, every cave has more than one cycle of crystallization. Together with Bartenev, I proposed a conception of speleogenesis cyclicity, dividing every cycle into three stages designated as initial, forming and modelling. This conception permits the explanation of the periodicity of crystallization/dissolution processes. According to Stepanov, the ensembles differ from one another only in the degree of development of one or another type of crust. We have now expanded the understanding of this term to include a few broader ideas, making it difficult to explain the term briefly. Hence, I well begin with a description of the main types of ensembles, and the sense of the term will become clear below.
Above I have already described a standard calcite ensemble. It is usually found beneath the floors of the canyons in the zones of intensive suction holes of water. It has variations without any kind of crust (for example without corallite crust), as well as variants with different types of helictites. The particular case is a wind ensemble with anemolites. Such an ensemble is seldom found in the pure state. Manganese oxides are usually found as secondary minerals.
Calcite-aragonite-magnesial ensemble. In this ensemble, the corallite crusts of calcite are followed by corallite crusts of te initiated by magnesium. The hydromagnesite corralites are characteristic at the edges of the arogonite dendrites. This ensemble is found rather rarely, being one of a few which make a tremendous aesthetic impression. The calcite of this ensemble is represented by very specific forms of helictites. The calcite-aragonite pseudohelictites are very strongly developed, though they are not specific for this ensemble. Manganese oxides are disseminated.
Calcite-aragonite-lead ensemble. This ensemble, appearing in the places of distribution sulfide veins , was discovered only in two small areas of the system, and the formation of aragonite was initiated by lead. The aragonite, in this case, plays its part in the phase of the development of gravitational crusts, forming tremendous segregations of various helictites ("straw" and "iron flowers") and stalactite- and stalagmite-like aggregates of unique morphology without any analogues in the caves of the world. The accumulations of thin grains of sulfides, cerussite, silicates and a small quantity of gypsum are characteristic of the ensemble.
Calcite-gypsum ensemble of the OSKhI type. Large gravitationally orientated segregations specific for ensembles of helictites, which are usually covered by celestite rosettes, are developed in the gravitational crusts of calcite. Large macelike stalagmites, which are rare in other ensembles, are found below segregations. Gypsum occurs together with calcite in corallite crusts. The gypsum chandeliers without gypsum stalagmites and antholite crusts are typical.
Calcite-gypsum ensemble of the Dikobraziy Hall type. Pseudohelictites prevail sharply among helictite forms. The celestite forms inclusions in gypsum. Calcite stalagmites are absent, but small gypsum stalagmites are present. The antholite crusts on gypsum are poorly developed. The monocrystalline gypsum stalagmites up to 30cm in height are a unique and specific type of aggregate, and their nature is not completely clear. The orientated overgrowth of gypsum monocrystals on calcite helictites is of the second unique type noted above.
Gypsum chandelier-stalagmite ensemble. The ensemble is found near the cave entrances beneath the remnants of gypsum of the Gaurduck beds. This ensemble is characterized by enormous hollow gypsum stalagmites and columns as well as by gigantic gypsum chandeliers. Gypsum aggregates of all types of crusts are developed. Celestite is found on limestones and on gypsum crystals. The deposits of this ensemble usually mask all previous deposits. This ensemble,that has been destroyed everywhere except in the Geophyzicheskaya Cave, can be said to "decorate" the most tremendous of the large halls of the system.
The thermal ensemble results from the hydrothermal stage and further reworking of its deposits. The alterations of limestones up to a 0.5m depth with the supply of ore minerals and silicates had occurred in the first stage (temperature was not measured); the gigantic crystalline calcite, encrusting the walls with inclusions of sulfides and oxides, was formed in the second stage with a temperature up to 180 degrees centigrade; the separate fluorite rosettes were originated during the third stage with a temperature up to 100 degree centigrade. The following processes of dissolution and reworking occurred with formation of sulfide mirrors.
Biogenic ensemble, overlaying on the previous forms. The hydrothermal processes determined conditions, such as the presence of sulfides, iron, and manganese, to start the biogenic sulfur cycle described first by P.Forti in 1990 for the caves of Italy. Unfortunately, we did not devote our attention to these processes, though the degree of their occurrence in Cupp-Coutunn is far greater than anywhere else. At this moment, not all the information is analyzed. Korshunov's expedition this year collected data; the bacterial crops had came up, but their definition needs much time. The essence is in the simultaneous activity of sulfate-reducing and sulfate-oxidizing bacteria in the zones of air stagnation. The primary amount of sulfur is found in sulfides and is supported further by bituminous inclusions, extracted during the corrosion of limestone. The sulfur follows a cycle beginning from hydrogen sulfide (the product of the life activity of sulfate-reducing bacteria) through sulfuric acid (sulfate-oxidizing bacteria) and gypsum, which from as a result of the chemical reaction between limestone and water, and the process finishes with the development of new hydrogen sulfide. The iron and the manganese are important for the life activity of the sulfate-reducing bacteria; the weak air circulation is important to retain the sulfur in the area of the process activity (naturally , the hydrogen sulfide is volatile). The entire process takes place in a unit of very interesting matter traditionally known as residual clay. This is a very fluffy silicate-iron-magnesian clay with gypsum inclusions. The clay covers the walls and ceilings in a layer up to 0.5-40mm thick, falling sometimes on the floor and accumulating in large massifs. In fact, it is actually a mixture of the residual material produced by the corrosion of limestone, of the bacterial colonies and of the products of their life activity. This substance intensively smells of hydrogen sulfide when it is mechanically damaged. It is interesting that all this is balanced on a large amount of factors and ideally should exist in a very unstable equilibration. For example, the sulfate-reducing bacteria are anaerobic; their life activity in an unflooded cave is possible only because the clay resists for a ventilation, and the sulfate-oxidizing bacteria absorbs the remaining oxygen. Nevertheless, the stability is very high.
The residual clay creates significant limitations on speleological equipment. The clay is a fantastic heat-isolator due to its porosity, and the blind upper niches and galleries become wonderful catchers of the heat. For example, if a candle or a carbide lamp burns for ten minutes in a zone where the residual clay is present and the air is stagnant, the temperature will rise to 50 degrees centigrade or more in some niches of the ceiling and will completely destroy the gypsum speleothems. In one case, an inexpertly located underground camp thoroughally heated a chain of tremendous halls up to 38 degrees centigrade. Therefore, the strictest self-restraint, which speleologists are obliged to accept in the Cupp-Coutunn caves, relate to the use of open fire (these limitations can be lifted only for photography lasting a few minutes) and the location of underground camps (only in wind galleries with a "kitchen" using only dry fuel).
In the upper floors of caves, where the limestones are bituminous, process develops that has a tendency to release excess sulfur in some types of gypsum producing large masses of gypsum sand, which apparently are a source of gypsum in main parts of the cave system. If the microclimate in the place of the accumulation of gypsum sand permits, an essentially gypsum ensemble is formed, seeming misplaced in the zones of intensive corrosion, but existing nevertheless. This ensemble consists predominantly of antholite crusts, though the corallite crusts also develop. The antholite crusts (represented by needles and selenite layers) which develop in and on the clay are an important feature of this ensemble, because gypsum-bearing clays and sands are not formed in any other way. The inclusions of residual matter of altered limestones are often present in the gypsum of this ensemble.
In dry places, part of the gypsum may be replaced by epsomite. The particular case of this ensemble is a gypsum-bearded ensemble, characterized by the complete absence of the corallite crust and the prevalence of unknitted filamentary crystals represented by gypsum hairs and rare thin needles. In two places out of three where this ensemble was found, it was destroyed during a single year by tourists. The filamentary gypsum is so delicate that even with an electric light, one needs to be extremely percise, because air waves from quick movements even one meter from the formations can destroy them. The fluorine-silicate ensemble occurs as a consequence of the biogenic ensemble. The conditions for the ensemble's appearance are provided by the presence of detritus of vein fluorite or fluorite clusters of the thermal stage. Sulfuric acid, involved in the biogenic cycle of sulfur, reacts with fluorite, expelling hydrofluoric acid into the air. Some crystals are dissolved along fractures up to 3 - 5cm in depth. The hydrofluoric acid the reacts with the calcite or gypsum of speleothems, forming new fluorite. The majority of zinc-aluminosilicates occurs in this ensemble. Here it is necessary to withdraw into the sphere of hypotheses, because the investigations are not yet finished. It has been suggested that the hydrofluoric acid reacts with silicates of the residual clay, producing quadrifluoric silica gas, which in turn reacts with the sulfide veins in limestone and its detritus. My colleagues and I are not able to suggest another model, but also we are not able to verify this one. Unfortunately, in all places where the extractions of sauconite are found, clearly tracing fractures in limestone, there is a layer of such beautiful speleothems between the sauconite excretions and the wall that it is a sin to disfigure them to verify the presence of a sulfide vein. At the moment, it is possible that the elements of this ensemble, which are useful for research by direct methods, are already found. Very interesting excretions on metallic objects (such as survey stations ladders installed into pits) mentioned already in the section "Minerals" can be found in some places of the cave where the well developed, essentially gypsum ensemble and the elements of the fluorine-silicate ensemble should not be noticeable.