ПРОЦЕССЫ МИНЕРАЛООБРАЗОВАНИЯ И МИНЕРАЛЬНЫЕ АНСАМБЛИ

В терминах минералов и агрегатов минералогию пещеры можно описать только в общих чертах. Для "завершающих штрихов" мы используем малораспространенное понятие "ансамбль", введенное В.И.Степановым, как существенно более емкое чем, скажем, парагенезис, так как многие ансамбли состоят из одних и тех же минералов, но коренным образом различаются по агрегатам. В то же время понятие ансамбля однозначно определяет одновременно процессы минералообразования, микроклимат и остальные главные параметры. Естественно, в общем случае понятие ансамбля не универсально и каждый тип ансамбля описывается только в приложении к конкретной системе пещер или карстовому региону.

Строго по Степанову, ансамбль есть результат одного цикла кристаллизации, при котором обычно на субаквальные коры нарастают гравитационные, потом кораллитовые, потом антолитовые (для некарбонатных), потом наступает фаза обрушения и растворения. Как правило, в каждой пещере отмечается более одного цикла кристаллизации. Выдвинутая автором совместно с О.Бартеневым концепция цикличности спелеогенеза (образования пещер) как такового, делящая каждый цикл на три этапа - инициирующий, формирующий и моделирующий, позволяет объяснить и периодичность процессов кристаллизации/растворения. Ансамбли по Степанову отличаются друг от друга практически только развитостью тех или иных кор. Мы же сейчас вкладываем в это понятие несколько более широкий смысл, который даже затруднительно объяснить в нескольких словах. Поэтому сразу перейдем к описанию главных типов ансамблей, а смысл понятия станет понятен по ходу.

Суть заключается в одновременной деятельности сульфатредуцирующих и сульфатокисляющих бактерий в зонах застоя воздуха. Исходное количество серы содержится в сульфидах и далее подкрепляется вскрывающимися по мере коррозии известняка битуминозными включениями. Сера идет по циклу сероводород (продукт жизнедеятельности сульфатредуцентов), серная кислота (сульфатокислители), гипс (химическая реакция с известняком и водой), опять сероводород. Железо или марганец важны для жизнедеятельности сульфатредуцентов, слабая воздушная циркуляция важна для удержания серы в районе распространения процесса (сероводород, естественно, летуч). Весь процесс происходит в толще очень интересной субстанции, пока по традиции называемой остаточной глиной. Это очень пушистая силикатно-железисто-магнезиальная глинка с включениями гипса, покрывающая в зонах распространения ансамбля стены и потолки слоем от 0.5 до 40 мм, иногда опадающая и скапливающаяся на полу большими массивами. Реально это смесь собственно остаточного материала от коррозии известняка, колоний бактерий и продуктов их жизнедеятельности. При механическом повреждении начинает интенсивно пахнуть сероводородом. Интересно, что все это сбалансировано на очень большом количестве факторов и по идее должно быть в очень неустойчивом равновесии. Так, сульфатредуценты в принципе анаэробы, и их жизнедеятельность в не затопленной пещере возможна только за счет того, что глинка противодействует воздухообмену, а сульфатокислители отбирают оставшийся кислород. Тем не менее, устойчивость велика.

Остаточная глина создает существенные ограничения на используемое спелеологами снаряжение. Ввиду пористости она является великолепным теплоизолятором, и тупиковые верхние ниши и галереи становятся прекрасными уловителями тепла. Так, если в зоне застоя воздуха и развития остаточной глины на 10 минут зажечь свечу или карбидную лампу, в какой-либо из близлежащих ниш потолка температура подскакивает до 50 градусов и выше, что полностью разрушает гипсовые натеки. Известен случай, когда неграмотно поставленный подземный лагерь натопил до 38 градусов цепочку огромных залов. Поэтому самые строгие самоограничения, которые спелеологам приходится принимать в пещерах Кап-Кутан, касаются использования открытого пламени (только для фото, на несколько минут), и подземных лагерей (только в ветровых галереях, с кухней только на сухом горючем).

В этажах пещер, где известняки высокобитуминозны, процесс идет с некоторым "креном" в сторону высвобождения в виде гипса лишней серы, давая большие массивы гипсового песка, по-видимому, являющиеся главным источником гипса в основной части системы. Если микроклимат в участке накопления гипсового песка позволяет, развивается существенно гипсовый ансамбль, вроде бы неуместный в зонах интенсивной коррозии, но тем не менее существующий. Этот ансамбль преимущественно состоит из антолитовых кор, хотя встречаются и кораллитовые. Важной особенностью этого ансамбля являются антолитовые коры в и на глинах (иглы, пропластки селенита и др.), так как гипс-содержащие глины и пески иным способом не образуются. В гипсах этого ансамбля часто имеются включения остаточного материала измененных известняков. В сухих участках часть гипса может быть замещена эпсомитом. Частным случаем этого ансамбля является гипсово-бородатый, характеризующийся полным отсутствием кораллитовой коры и преобладанием в антолитовой коре не сросшихся в пучки нитевидный кристаллов (гипсовые "волосы", "бороды", реже тонкие иглы). Из трех мест, где этот ансамбль был отмечен, в двух он был в течении года уничтожен туристами. Нитевидные гипсы настолько нежны, что даже с электрическим светом нужно вести себя чрезвычайно аккуратно - при быстром движении даже в метре от них воздушная волна их разрушает.

Как следствие биогенного ансамбля возникает также фтор-силикатный ансамбль. Условием его возникновения является наличие крупных высыпок жильного флюорита или скоплений флюорита термальной стадии. Серная кислота, работающая в биогенном цикле серы, реагирует с флюоритом (некоторые кристаллы растворены вдоль трещин на 3-5 см) с выделением в воздух плавиковой кислоты. Плавиковая кислота далее реагирует с кальцитом или гипсом натеков с образованием опять же флюорита. В этом же ансамбле появляется большинство цинк-алюмосиликатов. Здесь придется вторгнуться в область гипотез, потому что исследования не завершены. Предположительно плавиковая кислота реагирует с силикатами в остаточной глине с выделением также газообразного четырехфтористого кремния, который в свою очередь реагирует с сульфидными жилками в известняке и высыпками из них. Никакой иной модели мы предложить не в состоянии, а полностью проверить эту - тоже. К сожалению, во всех местах, где выделения, скажем, соконита найдены и трассируют явно трещины в известняке, между соконитовыми выделениями и стеной находится такой слой красивых натеков, что уродовать его, чтобы проверить наличие сульфидной жилки просто грех. К настоящему моменту, возможно, найдены элементы этого ансамбля, пригодные к исследованию прямым методом. В нескольких районах пещеры, где сильно развит существенно-гипсовый ансамбль и элементы фтор-силикатного просто не должны быть заметны, обнаружены очень интересные выделения на металлических предметах (топографические реперы, тросовые лестницы, вмонтированные в колодцы), уже упомянутые в разделе "минералы".

ПРАВИЛА ПОСЕЩЕНИЯ И МЕТОДЫ ИССЛЕДОВАНИЯ ПЕЩЕР